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Abstract
We study non-Abelian expanding waves that can be radiated from various
sources of Yang–Mills fields. We find a new class of exact wave solutions
to the Yang–Mills equations. These solutions are constructed for any gauge
group with a compact semi-simple Lie algebra and embrace asymmetrical
cases of radiations of expanding waves. They can be regarded as a reasonable
generalization of wave solutions of the Maxwell electrodynamics. It is of
interest to apply the found solutions to detect cosmic sources of Yang–Mills
fields. In the case of fields with SU(2) symmetry this could be realized by
observing the interaction of such sources’ radiation with neutrinos.

PACS numbers: 11.15.−q, 13.10.+q

As is well known, in the case of an N-parameter gauge group Yang–Mills fields are described
by the following equations outside their sources [1, 2]:

∂µF a,µν + fabcA
b
µF c,µν = 0, (1)

Fa,µν = ∂µAa,ν − ∂νAa,µ + fabcA
b,µAc,ν, (2)

where µ, ν = 0, 1, 2, 3, a, b, c = 1, 2, . . . , N,Aa,ν and Fa,µν are potentials and strengths
of a Yang–Mills field, respectively, fklm are the structure constants of an N-parameter gauge
group and ∂µ ≡ ∂/∂xµ, where xµ are orthogonal spacetime coordinates of the Minkowski
geometry.

One of the important problems is a search for exact wave solutions to the Yang–Mills
equations (1)–(2). Plane wave solutions to equations (1)–(2) and their generalizations are
most extensively studied and a number of interesting results are obtained [3–11]. Of special
note is the class of non-Abelian plane waves found by Coleman [3]. This work opened up
a fruitful way in the search for non-Abelian waves and gave impetus to a number of further
investigations of the problem.
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Our objective is to study expanding waves that can be radiated from sources of Yang–Mills
fields.

Let us seek potentials Aa,ν of such wave solutions to the Yang–Mills equations in the
following form:

Aa,0 = ua(y0, y1, y2, y3), Aa,n = (xn/r)Aa,0, y0 = x0 − r, yn = xn,

n = 1, 2, 3, a = 1, 2, . . . , N, r =
√

(x1)2 + (x2)2 + (x3)2, (3)

where ua are some functions of the wave phase y0 = x0 − r and of the spatial coordinates
yn = xn.

We will further consider gauge groups with compact semi-simple Lie algebras which have
totally antisymmetric structure constants fabc [2, 12]. Then, substituting expressions (3) into
formula (2) for the field strengths Fa,µν , we readily find

Fa,0n = ∂ua/∂yn, F a,in = (1/r)(xi∂ua/∂yn − xn∂ua/∂yi),

yn = xn, i, n = 1, 2, 3. (4)

Let us now substitute expressions (3) and (4) for Aa,ν and Fa,µν into the Yang–Mills
equation (1).

Then when the index ν = 0 from (1) we obtain

3∑
i=1

(
∂2ua

∂y2
i

− yi

r

∂2ua

∂y0∂yi

− yi

r
fabcu

b ∂uc

∂yi

)
= 0, (5)

where yi = xi and y0 = x0 − r. From this point on we shall label xi by yi when i = 1, 2, 3.
When the index ν = n = 1, 2, 3 from equation (1) we obtain after reductions

yn

r

3∑
i=1

(
yi

∂2ua

∂y0∂yi

− r
∂2ua

∂y2
i

+
yi

r

∂ua

∂yi

+ fabcyiu
b ∂uc

∂yi

)
+

∂

∂yn

(
3∑

i=1

yi

∂ua

∂yi

)
= 0. (6)

As is readily seen, equations (5) and (6) are fulfilled when the functions ua satisfy the following
two equations which are sets of uncoupled linear partial differential equations:

3∑
i=1

yi

∂ua

∂yi

= 0,

3∑
i=1

∂2ua

∂y2
i

= 0. (7)

As follows from expressions (4) and the first equation in (7), the considered waves are
transverse.

Let us turn to the first equation in (7) and show that it has the following solution:

ua(y0, y1, y2, y3) = ga(y0, ξ1, ξ2, ξ3), ξi = yi/r, r =
√

y2
1 + y2

2 + y2
3 , (8)

where ga are arbitrary differentiable functions.
Actually, from (8) we derive

∂ua

∂yi

= 1

r

∂ga

∂ξi

− yi

r3

3∑
n=1

yn

∂ga

∂ξn

, i = 1, 2, 3. (9)

From (9) we get the identity
∑3

i=1 yi∂ua/∂yi ≡ 0.
Therefore, formula (8) gives solutions to the first equation in (7).
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From (8) we find

∂ga

∂yi

= 1

r

3∑
k=1

∂ga

∂ξk

(δik − ξiξk) , i = 1, 2, 3,

ξi = yi/r, δii = 1, δik = 0 when k �= i, (10)

∂2ga

∂y2
i

= 1

r2

3∑
k,n=1

∂2ga

∂ξk∂ξn

(δik − ξiξk) (δin − ξiξn) − 1

r2

3∑
k=1

∂ga

∂ξk

[
ξk

(
1 − 3ξ 2

i

)
+ 2ξiδik

]
.

Let us substitute the functions ua = ga(y0, ξ1, ξ2, ξ3) into the second part in (7). Then using
formulae (10) and the equality ξ 2

1 + ξ 2
2 + ξ 2

3 = 1, we obtain

3∑
i=1

[(
1 − ξ 2

i

)∂2ga

∂ξ 2
i

− 2ξi

∂ga

∂ξi

]
−

3∑
i,k=1
i �=k

ξiξk

∂2ga

∂ξi∂ξk

= 0. (11)

The arguments ξi = yi/r of the functions ga are not independent, since ξ 2
1 + ξ 2

2 + ξ 2
3 = 1. That

is why instead of ξ1, ξ2, ξ3, we can choose two independent arguments related to them.
As will be seen below, it is convenient to choose the following two arguments θ and σ :

ga(y0, ξ1, ξ2, ξ3) = ha(y0, θ, σ ), θ = 1

2
ln

(
1 + ξ1

1 − ξ1

)
, σ = arctan

(
ξ2

ξ3

)
. (12)

Then from (12) we find

∂ga

∂ξ1
= β

∂ha

∂θ
,

∂ga

∂ξ2
= γ ξ3

∂ha

∂σ
,

∂ga

∂ξ3
= −γ ξ2

∂ha

∂σ
, β = 1

1 − ξ 2
1

,

γ = 1

ξ 2
2 + ξ 2

3

,
∂2ga

∂ξ 2
1

= β2

(
∂2ha

∂θ2
+ 2ξ1

∂ha

∂θ

)
,

∂2ga

∂ξ 2
2

= γ 2

(
ξ 2

3
∂2ha

∂σ 2
− 2ξ2ξ3

∂ha

∂σ

)
,

∂2ga

∂ξ 2
3

= γ 2

(
ξ 2

2
∂2ha

∂σ 2
+ 2ξ2ξ3

∂ha

∂σ

)
,

∂2ga

∂ξ1∂ξ2
= βγ ξ3

∂2ha

∂θ∂σ
, (13)

∂2ga

∂ξ1∂ξ3
= −βγ ξ2

∂2ha

∂θ∂σ
,

∂2ga

∂ξ2∂ξ3
= −γ 2

(
ξ2ξ3

∂2ha

∂σ 2
+

(
ξ 2

3 − ξ 2
2

) ∂ha

∂σ

)
.

Let us substitute expressions (13) into equation (11). Then after reductions we obtain

1

1 − ξ 2
1

∂2ha

∂θ2
+

1

ξ 2
2 + ξ 2

3

∂2ha

∂σ 2
= 0. (14)

Since the variables ξi = yi/r satisfy the equality ξ 2
2 + ξ 2

3 = 1 − ξ 2
1 , from (14) we come to the

Laplace equation

∂2ha

∂θ2
+

∂2ha

∂σ 2
= 0, (15)

where, as is seen from (12), −∞ < θ < ∞,−π/2 � σ � π/2.

Therefore, the problem under consideration is reduced to the following. We should find
functions ha(y0, θ, σ ) that are harmonic with respect to the arguments θ and σ in the band
−π/2 � σ � π/2.

Let us denote

ha
+(y0, θ) = ha(y0, θ, π/2), ha

−(y0, θ) = ha(y0, θ,−π/2). (16)
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Then we have the classical problem of finding harmonic functions ha in the band −∞ < θ <

∞, −π/2 � σ � π/2 that take on arbitrary values ha
+ and ha

− when σ = ±π/2. Its solution
is described by the well-known Palatini formula [13, 14] which acquires the form

ha(y0, θ, σ ) = Re ϕa(y0, z), z = θ + iσ,

ϕa(y0, z) = 1

2π

∫ ∞

−∞

ha
+(y0, s) + ha

−(y0, s)

cosh(s − z)
ds − i

2π
sinh z

∫ ∞

−∞

ha
+(y0, s) − ha

−(y0, s)

cosh s cosh(s − z)
ds,

(17)

where the sought functions ha are the real parts of the functions ϕa which are analytic functions
of the complex argument z = θ + iσ in the considered domain.

Using formulae (3), (8), (12) and (17), we find the field potentialsAa,ν :

Aa,0 = ha

(
x0 − r,

1

2
ln

r + x1

r − x1
, arctan

x2

x3

)
, Aa,n = (xn/r)Aa,0,

n = 1, 2.3, a = 1, 2, . . . , N, r =
√

(x1)2 + (x2)2 + (x3)2. (18)

The obtained formulae (3), (4), (17) and (18) give the sought expanding wave solutions to the
Yang–Mills equations (1)–(2). These solutions are constructed for any gauge group with a
compact semi-simple Lie algebra and embrace asymmetrical cases of radiations of expanding
waves. They generalize wave solutions of the Maxwell electrodynamics and are determined
by 2N arbitrary functions ha

+(y0, θ) and ha
−(y0, θ).

As an example, let us consider the particular case

ha
±(y0, θ) = ka

1 (y0) sinh θ ± ka
2 (y0)

cosh θ
, (19)

where ka
1 and ka

2 are some functions of the wave phase y0 = x0 − r .
Then from (17) we get

ϕa(y0, z) = ka
1 (y0)

π

∫ ∞

−∞

tanh s

cosh(s − z)
ds − ika

2 (y0) sinh z

π

∫ ∞

−∞

1

cosh2 s cosh(s − z)
ds. (20)

Let us denote

p = exp s, q = exp z. (21)

Then the two integrals in (20) can be represented as∫
tanh s

cosh(s − z)
ds = 2q

∫
(p2 − 1)dp

(p2 + 1)(p2 + q2)
,

(22)∫
1

cosh2 s cosh(s − z)
ds = 8q

∫
p2dp

(p2 + 1)2(p2 + q2)
.

After simple calculations we obtain∫
(p2 − 1) dp

(p2 + 1)(p2 + q2)
= 1

q2 − 1

[
−2 arctan p +

i(q2 + 1)

2q
ln

(
p + iq

p − iq

)]
+ const,

∫
p2dp

(p2 + 1)2(p2 + q2)
= q2

(q2 − 1)2

[
arctan p − i

2q
ln

(
p + iq

p − iq

)]

− 1

2(q2 − 1)

(
arctan p +

p

p2 + 1

)
+ const. (23)
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From (21)–(23) we find∫ ∞

−∞

tanh s

cosh(s − z)
ds = π(q − 1)

q + 1
,

(24)∫ ∞

−∞

1

cosh2 s cosh(s − z)
ds = 2πq

(q + 1)2
, q = exp z.

Formulae (20) and (24) give

ϕa(y0, z) = [
ka

1 (y0) − ika
2 (y0)

]
tanh(z/2). (25)

From (17) and (25) we obtain

ha(y0, θ, σ ) = Re ϕa(y0, θ + iσ) = ka
1 (y0)(e2θ − 1) + 2ka

2 (y0) eθ sin σ

e2θ + 2eθ cos σ + 1
. (26)

Consider the non-Abelian wave propagating in the semi-infinite space x3 � 0 and
corresponding to the particular solution (26). Then, using formulae (18), (26) and the evident
relations sin σ = (x2/x3) cos σ, cos σ = [1 + (x2/x3)2]−1/2, where σ = arctan(x2/x3), we
find after reductions

Aa,0 = ka
1 (x0 − r)x1 + ka

2 (x0 − r)x2

r + x3
, x3 � 0. (27)

Formulae (3), (4) and (27) give us an example of non-Abelian expanding waves.
The found non-Abelian wave solutions could be applied to detect cosmic sources of

Yang–Mills fields. Consider fields with SU(2) symmetry. Then the presence of non-Abelian
waves implies the fundamental possibility of electroweak interactions with them. That is
why cosmic sources of Yang–Mills fields with SU(2) symmetry could be detected by means
of experiments with neutrinos. In particular, if the solar radiation could have non-Abelian
components, then they could be revealed by observing possible changes of the energies of
neutrinos during solar eclipses.
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Mir)
[14] Lawrentjew M A and Schabat B W 1967 Methoden der Komplexen Funktionentheorie (Berlin: VEB Deutscher

Verlag der Wissenschaften)

http://dx.doi.org/10.1016/0370-2693(77)90344-6
http://dx.doi.org/10.1016/0370-2693(79)90655-5
http://dx.doi.org/10.1103/PhysRevD.19.471
http://dx.doi.org/10.1016/0370-2693(80)90963-6
http://dx.doi.org/10.1016/0370-2693(84)90180-1
http://dx.doi.org/10.1063/1.526576
http://dx.doi.org/10.1016/0370-2693(86)90014-6
http://dx.doi.org/10.1016/0370-2693(94)91205-X
http://dx.doi.org/10.1007/s11232-006-0102-9

	References

